

Some Nb₃Sn Magnet Test Failures and Some Lessons-Learned at LBNL

Alan Lietzke, Paul Bish, Doyle Byford, Luisa Chiesa, Roy Hannaford, Sara Mattafirri, Al McInturff, Mark Nyman LBNL Superconducting Magnet Testing

BERKELEY LAB

Introduction

- Magnet Failure:
 - -inadequate or unexpected performance.
- Some examples & lessons learned.
- Summary
- Future Plans

Mission

LBNL Superconducting Magnet Group:

- Develop magnet technology for cost-effective, high-field accelerator options.
- Design & fabricate POP coils and magnets.

Superconducting Magnet Test Facility:

- Determine performance of POP magnets.
- Generate feedback for design/fabrication teams.

Hardware: PS's & Cryostats

Power Supplies:

21kA (3*7kA, 2 T-lines

12kA (energy extraction

Cryostats:

36" horizontal 1.8K

4.3K 2. 32" vertical

3. 15" vertical 4.3K

BERKELEY LAB

Hardware: DAQ Limitations

Continuous History (2-300s/sample):

- Cryostat: 20 chn (4-wire) + 20 chn (2-wire)
- S-gauge: 20 chn (2-wire)

Ramp History (0.5-6s/sample):

- Primary: 40 chn (2-wire, S-gauge & Rsplice)
- S-gauge back-up: 20 chn (2-wire)

Quench (0.2-5 K-samples/s):

96 chns (QDC triggered)

Fast-Flux (50-200 K-samples/s):

4 chns (imbalance triggered)

Hardware: Magnetic Measurement

Rotating coils (tangential + D&Q bucking):

```
1. L = 43 cm r = 1.2 cm (needs repair)
```

2.
$$L = 100 \text{ cm}$$
 $r = 1.2 \text{ cm}$ (needs repair)

3.
$$L = 10 \text{ cm}$$
 $r = 1.2 \text{ cm}$ (FNAL loan)

4.
$$L = 80 \text{ cm}$$
 $r = 2.4 \text{ cm}$ (FNAL loan)

Measurement Benches:

1. Horizontal: ~ 4 meter scan

2. Vertical: ~ 1.5 meter scan

Anti-cryostats:

35mm OD 25mm ID

2. 63mm OD 50mm ID

LBNL Nb₃Sn Magnet "Failures"

D20 (1997, 13T, 50mm, 4-coil, cos-theta dipole):

- $\sim 95\%$ of 1.8K Iss.
- Degraded: 13.5T to 12T @ 1.8K. (< 4.3K Iss).
- Movement of low-field splice.
- Recovered 4.3K Iss on 2nd thermal cycle (12.8T).
- a₂ hysteresis.

RD3a (2000): 14.5T, 10mm, common-coil dipole.

- Internal arc on first quench (∼60% of Iss).
- Careless insulation between coil, heater & metallic coil-case.
- Voltage aggravated by mismatched quenching L/R's.
- Destroyed two of the three coils.

LBNL Nb₃Sn Magnet "Failures"

- SM02 (Feb. 2002): 12T, small, mixed-strand common-coil dipole.
 - $\sim 40\%$ of Iss (mystery remains).
- RD3c (May 2002): 11T, 35mm, 3-coil, common-coil dipole:
 - $-\sim 95\%$ of Iss (repeated conductor motions).
 - 5 unit shift in sextupole.
 - b₂ hysteresis (left-right asymmetry in Deff)
- SM03 (Oct. 2002): 12T, small cored mixed-strand common-coil:
 - 65% of Iss, consistent splice quenching.
 - Damaged conductor near splice.
- NMR (July 2003): 11T, small 4-coil opposed common-coil:
 - 60% of Iss (mystery remains).

D20

Performance:

- 13.5T, but costly & slow.
- Ramp-rate cliff.

Lessons:

- Need better, safer pre-stress.
- Better splice immobilization.
- More smaller magnet tests.
- Ramp-rate cliff: quench-back.

D20: MagMeas

Measurement Interest:

- Geometric Harmonics
- Axial & current dependence
- Hysteresis.

Disappointments:

- Large hysteresis
- $a_2 > b_3$
- $a_2 = -6x10^{-4} \text{ (upramp)}$

Lessons:

- D_{eff} needs to be smaller (or compensated)
- D_{eff} needs to be balanced between coils.

SM-02

Performance:

- RRR = 250
- 4.8T (40% of SS-limit)
- No ramp-rate hump.
- Splice quenching?? (noise).

SM-02 Ramp Rate Dependence

SM-02 Quench History

Lessons:

Higher S/N for high RRR splices.

RD3c: Harmonic Measurement Goals

First "Common-Coil" harmonic measurements:

- Design: $\sim 10^{-4}$ central dipole harmonics @ max.B.

- Measure relevant geometric & dynamic effects.

- Compare with calculations.

Cost constraints:

- Reuse RD3b outer coils
- Reuse RD3b yoke/structure.
- New, RD3b-style harmonic correction coil-module.

Correction-coil restraints:

- One-layer/side.
- One spacer/layer/bore.

Bore constraints:

• 35mm bore (10.9 T)

RD3c: 11T Racetrack Common-Coil

Cost-Effective:

- Reuse 16T structure:
 - Iron yoke
 - Bladder & Key
 - Al shell
- Reuse 14.5T outer coils.

RD3c: Magnetic Design

Challenge:

 Correct large positive sextupole (reused outer coils).

- Large (a2) quadrupole (reused yoke).
- Large SC-hysteresis (Nb₃Sn)
- Smallest possible bore.

Magnet Performance:

- ~90% of SS-limit
- Slow training, aborted.
- Usual ramp-rate cliff.

RAMP RATE SENSITIVITY

OUENCH HISTORY RD3c

Conductor/splice performance:

- RRR = better balanced
- Rsplice < 1 nOhm
- Flux jumps at low current.
- Repeating conductor movement.

RD3c: "Stick-Slip" Quench Triggers

- HF Impulse:
 - -300V/s
 - ->2000V/s
- HF Ringing.
- Occasional quench trigger.

RD3c: Fast Flux Adjustments

wo Kinds:

- "Flux Jumps":
 - Slow (10ms)
 - -I < 50% of Iss
 - Polarity \sim dB/dt.
 - Every ramp.
- "Stick-Slip":
 - Fast (0.1ms)
 - "Training":
 - Yes < 8KA.
 - No > 8KA.

Fast Flux Changes vs Imag

RD3c: Multi-Ramp FFC "Training"

- •"Flux Jump": Repeat on down-ramp.
- •"Stick-Slip":
 - Only with up-ramp (threshold = 300V/s).

RD3c: Magnetic Measurements

Central harmonics

Normal	calculated	measured
b ₃ (10-4)	-5.44	-10.39
b ₅ (10 ⁻⁴)	-0.24	-0.02
b ₇ (10 ⁻⁴)	0.58	0.61
b ₉ (10 ⁻⁴)	< 0.01	< 0.01

 $\overline{I_{op}}=10 \text{ kA}, R_{ref}=10 \text{ mm}$

Magnetization – Eddy Currents

End-Field

Iron Saturation

BERKELEY LAB

RD3c: Problem Summary

- "Stick-slip training" stalled above 8kA:
 - Magnet even "forgets" previous ramp.
- Quench training stalled 2kA (25%) above where "stick-slip training" stopped.
- Large hysteresis
- 5-unit geometric sextupole offset.
- Large a2 (common-coil).
- Unexpected b2 (with hysteresis).

SM-03

Magnet Performance:

- 7T (65% of SS-limit)
- Small (6%) training effect.
- Tiny (2%) ramp-rate hump.

SM-03 Quench History

Conductor/splice performance:

- RRR = 180
- New amplifiers work well.
- 0.2 < Rsplice < 0.3 nOhm.

Quench initiation:

- No fast motion!
- Intense, short start.
- Outer turn
- Not the splice.

Propagation:

- Into nearby splice.
- Temporary splice fallback??
- Rapid heating of Qorigin.
- Slow splice recession as current falls.

Conclusions:

- Splices: low heating, well cooled.
- Nb₃Sn damaged 5-10 mm from splice.

Magnet Performance:

- 7T (61% of Iss)
- No training effect.
- No ramp-rate hump.

NMR Ramp Rate Studies

NMR Quench History

Conductor/splice performance:

- RRR = 5.6
- New amplifiers work well.
- 0.2 < Rsplice < 0.3 nOhm.

Quench initiation:

- Outside of splice.
- Many fast motions.
- All but 1st in SC-12.

Propagation:

- ~50% into nearby splice in ~ 1 ms.
- Maximum splice temperature after quenching: 40K.

Conclusions:

- Splices: low heating, well cooled, but moving.
- ???

Conductor movement:

- Slipping at the SC01/SC12 interface (none at the other two coil interfaces).
- Some splice slips (1st observed).
- Gradual coil unloading started at ~80% of Iquench.

Conclusions:

- Needs faster DAQ working again.
- Splices: low heating, well cooled, but moving.

Summary

- Splice locale problems:
 - -D20, SM02, SM03, NMR.
- Repetitive Conductor motion:
 - -D20, Rd3c, NMR.
- Hysteresis:
 - -D20, RD3c.
- Conductor Control:
 - -RRR: RD3a
 - −Deff asymmetry: D20, RD3c.

Future Improvements:

- Rsplice Measurements:
 - -More upgraded V_{splice} amplifiers.
- Conductor motion:
 - -Quieter PS & environment.
 - Better localization (more chns, motion antennas).
 - -Small prestress/training magnet study.
- Deff & RRR problems:
 - -Conductor improvements.
 - -Better mfg & reaction Q-C.